
INTRODUCTION

Textile patterns are extensively used in digital textile

printing. Traditional textile pattern design requires

designers to collect inspirational images to extract

motifs or textures, then repeat and mend them to cre-

ate a continuous textural design without seams

appearing [1]. This work is time-consuming and

requires designers with inventiveness, information

extraction and expression skills, which need years of

professional training [2]. In recent years, artificial

intelligence has provided the textile and apparel

industry with various methods and solutions [3–4],

and neural style transfer has been steadily used in

textile design [5]. This technology can automatically

extract style features from a target style image and

shows them on a content image. Visual style mod-

elling and generation techniques of style transfer can

be used in the design process of textile patterns. The

pattern features in an inspirational image, which is

the style image in style transfer, can be modelled and

generated into a pattern image by reconstruction.

With the help of pattern generation techniques,

design efficiency can be significantly improved. 

However, the current research object of style mod-

elling and transfer focuses mostly on artistic painting,

which cannot sufficiently meet the specific require-

ments for textile pattern design. To liberate human

designers from laborious and time-consuming design

work and to encourage the implementation of image-

generating technology in textile design, it is crucial to

research the generation algorithms for textile pattern

design.

Texture generation is the foundation of pattern gen-

eration. Markov Random Field (MRF) [6] can model

and extract simple texture features from images.

However, generation with pixel-by-pixel matching
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Textile pattern design is a tedious and challenging task for designers. This paper proposes a fast textile pattern
generation algorithm that combines MRF-based and Gram-based methods. First, the reconstruction method based on
image optimisation is determined after analysing the specific requirements of textile pattern design. The pre-trained
VGG19 is selected as the style feature extraction neural network. Then, we compare the generation results of various
combinations of style loss functions and propose a multi-resolution image optimisation method. Finally, the smoothing
loss and colour histogram matching are added to improve the generation quality further, thus constructing an image
generation algorithm for textile pattern design. Experimental results demonstrate that our algorithm can effectively
generate complex textile patterns with global style and local detail features. The average image generation time is 575s,
over 84.3% faster than traditional algorithms. At the same time, this algorithm is convenient for switching styles and
requires lower computational capability. It can improve pattern design efficiency and promote the application of image
generation technology in textile design.
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Generare rapidă de modele textile, combinând metode bazate pe MRF și pe Gram

Designul modelelor textile este o sarcină minuţioasă și provocatoare pentru designeri. Această lucrare propune un
algoritm de generare rapidă a modelelor textile, care combină metode bazate pe MRF și pe Gram. În primul rând,
metoda de reconstrucție bazată pe optimizarea imaginii este determinată după analiza cerințelor specifice ale designului
modelului textil. VGG19 pre-antrenat este selectat ca rețea neuronală de extracție a caracteristicilor de stil. Apoi, se
compară rezultatele generării diferitelor combinații de funcții de modficare a stilului și propunem o metodă de optimizare
a imaginii cu rezoluții multiple. În cele din urmă, diminuarea netezirii și histograma potrivirii culorii sunt adăugate pentru
a îmbunătăți și mai mult calitatea generării, construind astfel un algoritm de generare a imaginii pentru designul
modelelor textile. Rezultatele experimentale demonstrează că algoritmul nostru poate genera în mod eficient modele
textile complexe cu stil global și caracteristici de detalii locale. Timpul mediu de generare a imaginii este de 575 de
secunde, ceea ce este cu peste 84,3% mai rapid decât algoritmii tradiționali. În același timp, acest algoritm este
convenabil pentru schimbarea stilurilor și necesită o capacitate de calcul mai mică. Se poate îmbunătăți eficiența
designului modelului și se poate promova aplicarea tehnologiei de generare a imaginii în designul textil.

Cuvinte-cheie: inteligență artificială, proiectare asistată de calculator, generare de imagini, rețele neuronale, design de
modele textile
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uses a great deal of time. With the significant
advance in deep learning, more powerful neural style
transfer became popular. Gatys et al. [7] found that
colour and texture can describe the style features of
an image. The style features were extracted by con-
volutional neural networks (CNN) and modelled with
Gram matrices, which can be used to compute style
loss and generate images. Li et al. [8] combined MRF
with CNN for style transfer. Patches are obtained by
CNN and then matched by MRF in the feature
spaces to generate images with local detail features.
Fayyaz et al. [9] used adversarial generative net-
works to generate complex textile patterns automati-
cally but required a professional graphics processing
unit (GPU) to train a neural model for an extended
period. Jiang et al. [10] argued that compared to
painting style transfer, fashion style transfer needs to
generate not only the global features of style image
but also the local details features of patterns.
Therefore, textile pattern generation should address
the balance between global style and local pattern
details. Secondly, designers visualise various inspira-
tional images frequently. In addition to maintaining
generation quality, increasing generation speed and
facilitating style switching is required. Lastly, tradi-
tional deep learning relies heavily on the computa-
tional performance of GPU, and designers do not
have specialised scientific computers to deploy large
neural network models. The algorithm’s model must
consider the generation feasibility in the central pro-
cessing unit (CPU), reducing GPU consumption.
Based on the specific requirements of textile pattern
design, we propose a multi-resolution optimisation
strategy to combine the MRF-based and Gram-based
methods. Low-resolution image generation uses the
MRF-based method for local pattern features. After
upsampling to a high-resolution image, the Gram-
based method is used to refine the global image
style. This strategy significantly decreases time while
preserving the quality of image generation, building a
fast textile pattern generation algorithm with the
smoothing function and histogram matching.

TEXTILE PATTERN GENERATION ALGORITHM

Style feature extraction neural network

Style extraction network is the basis of image style
modelling. Wang et al. [11] discovered that new net-
work architectures, such as residual neural network
(Res-Net), are inappropriate for style feature extrac-
tion. The residual connection will reduce the entropy
value of the feature map, which needs to add soft-
max layers to smooth the feature maps. However, the
pre-trained Visual Geometry Group network (VGG)
performs well in style feature extraction without addi-
tional layers. Therefore, pre-trained VGG19 is select-
ed as the style feature extraction neural network,
where '19' represents the number of convolutional
layers. The original VGG19 network consists of 16
convolutional layers and 3 fully connected layers
[12]. During the style extraction process, network lay-
ers for classification tasks after conv5_1 in the

VGG19 are eliminated to save computational capa-
bility.
In VGG19, shallower feature maps capture more tex-
ture features, and deeper feature maps capture more
sophisticated semantic features [13]. To fully cover
textile pattern features, it is important to combine fea-
tures from different layers in the VGG19.

Image reconstruction methods

After the style features are extracted, they need to be
reconstructed into an image. Currently, image recon-
struction approaches are divided into descriptive
methods based on image optimisation and genera-
tive method based on model optimisation [14]. The
first method reconstructs by iteratively optimising the
initial image pixel by pixel. This method focuses on a
target-style image, requires less computational capa-
bility and can be generated by CPU only. Moreover, it
offers better image quality and is convenient to switch
pattern styles. However, as this method involves mul-
tiple backpropagations, image generation takes a
longer time. The second method can generate images
using forward propagation after generative models
are trained, resulting in significant time savings.
However, model training needs large-scale datasets
and professional GPUs. Each style demands hours
or even days of training, making style changes diffi-
cult. In addition, many model-based methods employ
the same setups as image-based methods [15–16],
such as the feature extraction model and loss func-
tion. Due to the utilisation of images in the dataset
rather than a specific style map during training, the
image quality generated by the second method is
inferior to the first one and lacks pattern details.
In conclusion, our research selected the reconstruc-
tion method based on image optimisation. It uses
VGG19 to extract and model the style features of the
generative and target style images. The style loss
between these two images is computed using a spe-
cific loss function based on the extracted style fea-
tures. The generative image will be optimised based
on the style loss value. The initial image to generate
uses a random noise image. This method does not
need datasets or a significant amount of time to train
generative models. Simultaneously, it can generate
high-quality pictures, and it is convenient to switch
styles, making it more suitable for textile pattern
generation.

Comparison of style loss functions

Style loss is mainly divided into two types: Gram-
based loss (LG) and MRF-based loss (LM) [17]. Gram
matrix consists of inner products of specific vectors.
The angular and directional relationships between
two vectors can be expressed by their inner product.
When computing style loss, a specific convolution
kernel encodes the feature maps to Gram matrices.
Its diagonal components represent the number of dif-
ferent features. The Gram matrix can therefore
demonstrate the number relationship of each feature
and the interrelationships between features, thus
modelling the image’s global style features. After
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obtaining the respective Gram matrices for the style
and generation images using VGG19, the style loss
of each layer is calculated using mean square error.
The sum of all layer losses is LG between the gener-
ative and style images. The process details are
shown in step 2 in figures 1 and 2 and the LG can be
expressed as follows:  

  2
LG(y,ys) =  ║G[l](y) – G[l](ys)║

2
(1)



l

where G[l](y) and G[l](ys) are the Gram matrices at


layer [l] in the VGG19 of the generative image (y) and
target style image (ys) respectively.
MRF is a classical texture modelling method. The
generative and style images are extracted separate-
ly as patches. Each patch in the generative image is
matched with the most similar patch from the style
image patch library for filling or as a generation refer-
ence. Currently, MRF often combines CNN to calcu-
late LM. First is data augmentation for the style
image, such as scaling and rotation. Then, style
patches of the augmented style images and the gen-
erative image are obtained using VGG19. Utilising
the feature maps of {conv3_1 and conv4_1} layers to
extract patches for enhanced patch matching [8].
Patches of the generative and augmented style
images are matched by computing the cosine simi-
larity. It means encoding style features using MRF.
Finally, the style loss is obtained by calculating the
difference between the patches of the generative
image and the matched patches of augmented style
images. The process details are shown on step1 in
figure 2 and LM can be expressed as follows:

  2
LM(y,ys) = ║Pk(F [l](y)) – PMRF(k)(F [l] (Aug(ys)))║

l    k
(2)



where Pk(F [l](y)) is the k-th patch extracted by


feature maps of y at layer [l]; Aug(ys) is a series of
images obtained by ys after image augmentation;
PMRF(k) (F[l](Aug(ys))) is the k-th MRF-matched
patch extracted by feature maps of augmented ys at
layer [l].
Image generation using LG and LM, respectively.
Target style image: Chinese pattern picture shown in
figure 1, a; feature maps for LG: {conv1_1, conv2_1,
conv3_1, conv4_1, conv5_1} layers; rotation angles
for LM: 0°, 90°, –90° and 180°; optimiser: Adam;
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learning rate: 1e-2; number of iterations: 1000; deep
learning framework: PaddlePaddle 2.2; programming
language: Python 3.7; development platform: Baidu
AI Studio; operation system: Ubuntu 16.04; GPU:
NVIDIA Tesla V100; GPU memory: 16GB; CPU:
Intel(R) Xeon(R) Gold 6148 @ 2.40 GHz; random
access memory: 16 GB; hard disk drive: 100GB.
The results are shown in figure 1. It took 34 seconds
with LG and 1125 seconds with LM for the size of
800*800 pixels. Generation using LG is faster and
more sensitive to global styles such as colour and
texture. However, as shown in figure 1, b, LG cannot
generate local pattern details. It is challenging to
generate intricate and specific pattern features, such
as petals and stems. LM is a patch-based loss that is
more sensitive to local pattern features, but the por-
trayal of global features is inadequate, as shown in
figure 1, c. Because substantial patches need to be
extracted and matched for each round of iterative
optimisation, image generation using LM is time-con-
suming. Therefore, a combination of these two loss-
es may speed up the generation process and satisfy
the requirements for global style and local pattern
features in textile pattern generation.

Combination of style loss functions

Previous research [18–19] has often added LG and
LM to generate patterns with both global style and
local features. However, direct summation can lead
to mutual interference and reduce generation quality,
since LG and LM have an adverse effect on the gen-
eration process. By referring to the image pyramids
[20] and generative adversarial networks [21], we
suggest five combination strategies to assess the
quality and duration of image generation individually,
as shown in table 1.
Figure 1, a is the target style image, 1000 times for
each step, and the final image size is 500*500 pixels.
The generated images are scaled to the same size,
as shown in table 2. The generation time is shown in
table 3 for every option. 
In option 1, as the values of LG and LM have distinct
orders of magnitude, it is simple for one loss to sup-
press another, resulting in a generated image repre-
senting just a single kind of feature. As shown in
table 2, only global style features are shown after
step 1. Local pattern features like petals and stems
are absent from the generated image. It is difficult to

STYLE LOSS FUNCTION COMBINATION STRATEGIES

№
Option descriptions

Step1 Step2

1 LG + LM (high-resolution generation) /

2 down-sampling, LG (low-resolution generation) up-sampling, LM (high-resolution generation)

3 LG (high resolution-generation) LM (high-resolution generation)

4 down-sampling, LM (low-resolution generation) up-sampling, LG (high-resolution generation)

5 LM (high-resolution generation) LG (high-resolution generation)

Table 1



optimise the balance between these two losses and
to generate images with global style and local pattern
features.
In option 2, the generated image of the step 1 is
rough because of global features generation in low
resolution. Pattern position information is missing in
the subsequent step. The local pattern features in the
generated image of step 2 are random and cannot
follow the structures and shapes in the resulting
image of step 1. The final effect tends to use LM
alone, and the image background appears colour
cast. In addition, the patch exaction and matching
process consume a long time due to using LM to gen-
erate high-resolution image. Too many patches may
easily cause memory overflow when an image reach-
es 500*500.
In option 3, the generated image is similar to option
2. The colour and other style features from step 1 are
overwritten in step 2. Since both steps generate high-
resolution image and LG is insensitive to resolution
increase, the total time savings is insignificant com-
pared to option 2. Option 3 also has the problem of
memory overflow.
In option 4, Local pattern features are generated in
step 1, and global style is refined in step 2. As a
result of reducing image resolution in step 1, the gen-
eration time of LM is significantly shorter. The total
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generation time is reduced by 75.5% com-
pared to option 5.
In option 5, the generated image is similar to
option 4, and the second step using LG
keeps the pattern basic structures gener-
ated in step 1. The generation process takes
longer due to the use of LM in the first step
to generate a high-resolution image.
It can be found from the above experiments
that using LG is faster and easier to maintain

Fig. 1. Generation effects of different loss functions: a – target style
image; b – generated image by LG; c – generated image by LM

a                                 b                                c   

IMAGES GENERATED BY DIFFERENT COMBINATION STRATEGIES, INCLUDING INTERMEDIATE RESULTS

Option № 1 2 3 4 5

Step1

Step2 /

Image details

Table 2

Note: The regions in red frames are magnified to provide more details.

GENERATION TIME FOR DIFFERENT COMBINATION
STRATEGIES

Items
Option №

1 2 3 4 5

Step 1 time (s) 1354 18 34 240 1093

Step 2 time (s) / 1121 1020 35 31

Total time (s) 1354 1139 1054 275 1124

Table 3

pattern structural features in the initial image. Using
LM for generation is time-consuming and overwrites
the original structural features. Therefore, based on
the advantages and disadvantages of LG and LM, we
proposed a multi-resolution image optimisation
method. LM for low-resolution generation, upsam-
pling and LG for high-resolution generation. The
resulting images are similar to those generated at
high resolution in both steps. This method can quick-
ly generate textile patterns with global style and local
detail features.

Algorithm framework

After the basic procedure is determined, the generat-
ed image contains noises. Therefore, a smoothing
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function (equation 3) is needed to reduce noise by
minimising the image’s total variation [22].


h–1   w 3

LTV(y) =    (xi+1, j,c – xi, j,c)2 +   
i=1  j=1 c=1

h w–1   3                                                            
+    (xi, j+1,c – xi, j,c)2               (3)

i=1  j=1 c=1

where h, w and c denote the generated image's
height, width and channel.
Therefore, it is determined that LM is used for low-
resolution textile pattern generation in the first step,
which is called the MRF-based method. LG is is used
for high-resolution generation in the second step,
which is called the Gram-based method. Their loss
functions are shown below, with equation 4 for the
MRF-based method and equation 5 for the Gram-
based method: 

          

L′(y′,DS(ys)) = LM(y′,DS(ys)) + l1LTV(y′)  (4)
  

L(y,ys) = LG(y,ys) + l2LTV(y)          (5)  

where y ′ is the generative image of the first step;
DS(ys) is a down-sampled image of ys; the initial of y



is an up-sampled image of y ′; l1 and l2 are the
weights of the smoothing term.
Risser et al. [23] pointed out that Gram matrices do
not store statistical information such as mean and
variance, leading to unstable image generation. The
statistical information of the style features is included
after a histogram matching process, which can
increase generation quality and stability. Therefore,

adding histogram matching after the second step can
bring the colours of the textile pattern image closer to
the colours of the style image.
In summary, the workflow of the textile pattern gener-
ation algorithm is as follows:
(a) Down-sampling a target style image to reduce the

size.
(b) Generating a low-resolution image with local pat-

tern features by the MRF-based method.
(c) Up-sampling the resulting image of the MRF-

based method to the final size by interpolation. 
(d) Refining the global style of the up-sampled image

by the Gram-based method.
(e) Histogram matching between the resulting image

of the Gram-based method and the target style
image.

The framework is shown in figure 2. Additional
upsampling and optimisation processes can be
added for higher resolution and more detailed por-
trayals.

DISCUSSION

Comparing the pattern generation quality and dura-
tion of Johnson's [15], Li's [8] and our algorithms. The
generated image size is 500*500 pixels; 2000 times
for each step; COCO2017 [24] for the model training
set; and the critical hyper parameter settings are
maintained. The generated images are shown in
table 4. Johnson's algorithm takes longer to train the
model, with an average total time of 21134 s for train-
ing and generation. The global style of the patterns in

Fig. 2. Framework overview of the fast textile pattern generation algorithm
(the bidirectional arrows are paths of backpropagation)



the generated images closely resembles that of the
style images, but local detail features are absent. Li's
algorithm takes an average of 3655 s to generate and
does not need model pre-training. The generated
images show local details but do not adequately
refine the global style for various style images. Our
algorithm also does not need to pre-train the model
and the average generation time is 575 s. The result-
ing images with our algorithm generate global and
local features of different target styles, which can be
used as textile printings.

Limitations and future work

Three limitations in this paper could be addressed in
future works:
1. Our algorithm does not solve the issue of the slow

MRF-based method fundamentally. To increase
efficiency, we will attempt to save patch-matching
results for reuse in the following processes. 

2. The patterns generated by the current algorithm
are relatively random, and the algorithm's func-
tionality needs to be expanded to generate more
pattern effects, such as symmetry and gradients.
It will enable the algorithm to be used in a broad-
er range of design scenarios. 
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3. This algorithm can only generate patterns. In the
future, we will include content loss to build a fash-
ion style transfer algorithm for showing patterns
directly on textiles or apparel.

CONCLUSIONS

This paper proposes a fast textile pattern generation
algorithm combining MRF-based and Gram-based
methods. With a multi-resolution optimisation strate-
gy, this algorithm can generate complicated textile
pattern images with global style and local details. The
average generation time for a 500*500 pixels image
is 575 seconds, more than 84.3% faster than tradi-
tional algorithms. In addition, it is simple to switch tar-
get styles and can generate images by CPU only.
Therefore, it can increase the productivity of design-
ers and encourage the application of artificial intelli-
gence in textile design.
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EXAMPLES OF TEXTILE PATTERN GENERATION BY DIFFERENT ALGORITHMS

Option № 1 2 3 4 5

Style image

Johnson’s

Li’s

Ours

Table 4
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